
CAD4Sec Workshop

SAT Attack Complexity Analysis

Yadi Zhong and Ujjwal Guin

Auburn University, AL, USA

July 9, 2022

2

Motivation

▪ Globalized semiconductor

manufacturing and test[1-2]

• Diminishing share of U.S.

semiconductor manufacturing
➢ Increasing reliance on offshore

foundries.

• Malicious supply chain disruptions.

• Rise of IP theft.

• $412 billion semiconductor industry

is at risk.

• Logic Locking is the future.

[1] “White House 100-Day Reviews under Executive Order 14017" on "Building Resilient Supply Chains, Revitalizing American Manufacturing,

and Fostering Broad-Based Growth," June 2021.

[2] Moore’s Law Under Attack: The Impact of China’s Policies on Global Semiconductor Innovation, 2021

Number of countries with enterprises participating in

various phases of semiconductor production activity[2].

3

Outline

▪ Overview – Logic Locking

▪ Background – Boolean Satisfiability

▪ SAT Attack Complexity Analysis

▪ Traditional XOR-based Locking

▪Point Function-based Locking

▪ Time Complexity Analysis for Traditional SAT Attack

▪ Conclusion

4

Overview of Logic Locking

▪ Obfuscate the inner details of a
circuit.

▪ The correct functionality is:

• preserved when a correct key is
programmed in the tamper-
proof memory.

• altered for some input patterns
when a wrong key is applied.

▪ It is impossible to determine the
key bit just simply looking at a
key gate.

x0
x1

x2
x3

y

x0
x1

x2
x3

k0

y

k1

5

Boolean Satisfiability – Conjunctive
Normal Form (CNF)

AND 𝑦 = 𝑥0 ⋅ 𝑥1 𝑥0 ∨ 𝑥1 ∨ 𝑦 ∧ 𝑥0 ∨ ത𝑦 ∧ 𝑥1 ∨ ത𝑦

NAND 𝑦 = 𝑥0 ⋅ 𝑥1 𝑥0 ∨ 𝑥1 ∨ ത𝑦 ∧ 𝑥0 ∨ 𝑦 ∧ 𝑥1 ∨ 𝑦

OR 𝑦 = 𝑥0 + 𝑥1 𝑥0 ∨ 𝑥1 ∨ ത𝑦 ∧ 𝑥0 ∨ 𝑦 ∧ 𝑥1 ∨ 𝑦

NOR 𝑦 = 𝑥0 + 𝑥1 𝑥0 ∨ 𝑥1 ∨ 𝑦 ∧ 𝑥0 ∨ 𝑦 ∧ 𝑥1 ∨ 𝑦

XOR 𝑦 = 𝑥0 ⊕𝑥1 𝑥0 ∨ 𝑥1 ∨ ത𝑦 ∧ 𝑥0 ∨ 𝑥1 ∨ ത𝑦
∧ 𝑥0 ∨ 𝑥1 ∨ 𝑦 ∧ 𝑥0 ∨ 𝑥1 ∨ 𝑦

x0
x1

y

x0
x1

y

x0
x1

y

x0
x1

y

x0
x1

y

Terminology:

Literals: 𝑥𝑖, 𝑦
Clauses: 𝑥0 ∨ 𝑥1 ∨ 𝑦 , 𝑥0 ∨ ത𝑦 , …

Conjunctive normal form (CNF): 𝑥0 ∨ 𝑥1 ∨ 𝑦 ∧ 𝑥0 ∨ ത𝑦 ∧ 𝑥1 ∨ ത𝑦

6

Background – SAT Attack

▪ Finding the distinguishing input pattern
(DIP) from the miter circuit.

▪Deriving the correct key: CNF update.

▪Reporting DIPs and key value.
• UNSAT at the last iteration.

Locked Circuit

(Instance A)

Locked Circuit

(Instance B)

𝐾𝐴

𝐾𝐵

𝑋

1

Unlocked

Circuit (Oracle)𝐷𝐼𝑃 𝑌

7

Background – Post-SAT Solutions

[1]. Y. Zhong and U. Guin, “Complexity Analysis of the SAT Attack on Logic Locking,” arXiv preprint arXiv:2207.01808, 2022.

Locking Type Techniques Attacks

Point function [23]–[32] [71]–[85]

Cyclic [33]–[38] [86]–[88]

LUT [39]–[46] [46], [89], [90]

Scan [47]–[52] [91]–[93]

FSM [53]–[58] [94]–[99]

Timing [59]–[64] [100], [101]

HLS [65]–[70] [83], [84], [101]

▪Post-SAT locking techniques:
• Target exponential iterations

• Time out for SAT attack

▪Novel attacks emerge to break
these logic locking.

Table: Summary of Post-SAT locking and Attacks

8

Outline

▪ Overview

▪ Background

▪ SAT Attack Complexity Analysis

▪ Traditional XOR-based Locking

▪Point Function-based Locking

▪ Time Complexity Analysis for Traditional SAT Attack

▪ Conclusion

9

SAT Attack Complexity Analysis:
Traditional XOR-based Locking

▪ The DIP X and its
corresponding oracle
output Y forms an IO
pair.

▪An IO pair {𝑋, 𝑌}
reduces the locked
circuit 𝐶(𝑋, 𝐾, 𝑌) to
functions of keys
𝐶(𝐾𝐼 , 𝐾𝑂)

C(X,K,Y)

K

|K|

X
m

Y
n

DIP

X = {0,1}
m

Output

Y = {0,1}
n

C(KI,KO)KI

KO

Key

K = {0,1}
|K|

= {KI, KO}

{0,1}
p

...

C(Ki
1
, Kj

1
)K i

1
K j

1

C(Ki
2
, Kj

2
)K i

2
K j

2

C(Ki
3
, 1)K i

3
1

C(Ki
4
, 0)K i

4
0

KI

KO

{0,1}
p

10

Key Pruning Analysis

1

1

1

K
1

K
2

X
1

X
2

m1

m2

r1

r2

Cone 1

Cone 2
0

0

0

K
1

K
2

X
1

X
2

m1

m2

r1

r2

Cone 1

Cone 2

0

0/0/1

0/1/0

K
1

K
2

X
1

X
2

m1

m2

r1

r2

Cone 1

Cone 2

1

0/1/1

1/0/1

K
1

K
2

X
1

X
2

m1

m2

r1

r2

Cone 1

Cone 2

▪ Incorrect key

elimination:

• Half (𝐾𝑂 = 𝑓(𝐾𝐼))

• More than half

➢ 1 at AND output

and 0 at OR output

• Less than half

➢ 0 at AND output

and 1 at OR output

k0

k1

k2

k3

11

Key Pruning Analysis – Example

x0

x1

x2

x3

y0

(a)

G1

G0

G2

x0

x1

x2

x3

(b)

G1

G0

G2

Gk1

y0Gk0

k1

k0

k2

Gk2

9
2
7

6

5
4

3

8

10

11

12

13

14

1
1

1
1

(c)

G1

G0

G2

Gk1
1

Gk0

k1

k0

k2

Gk2

7

6

8

16

17

18

19

20 G0
7 k1

8 k2
k0

(e)

6

Iteration 1:

7 k1
17

G0

8 k2
18

16

6 k0 16

(d)

12

Key Pruning Analysis – Example – Cont.

1
1

0
1

(f)

G1

G0

G2

Gk1
0

Gk0

k1

k0

k2

Gk2

7

6

8

21

22

23

24

25 G0
7 k1

8 k2
k0

(h)

6

7 k1

22

G0

8 k2
23

21

6 k0 21

(g)

Iteration 2:

13

Key Pruning Analysis – Example – Cont.

G0
7 k1

8 k2
k0

(k)

6

7 k1

27

G0

8 k2
28

26

6 k0 26

(j)

0
1

1
1

(i)

G1

G0

G2

Gk1
0

Gk0

k1

k0

k2

Gk2

7

6

8

26

27

28

29

30

Iteration 3:

There are 3-key bits. Generally, we expect 23 = 8 DIPs to break the 3-bit key.

However, SAT only needs 3 DIPs.

14

SAT Attack Complexity Analysis

15

SAT Attack Complexity Analysis – Cont.

The overall SAT attack complexity is not a strict monotonically increasing function.

16

Non-Monotonically Increasing Attack
Complexity Key

{𝒌𝟎, … , 𝒌𝟑}
1st IO Pair

{𝟎𝟎𝟎𝟎𝟎𝟎𝟎; 𝟏}
1st IO Pair

{𝟎𝟎𝟎𝟏𝟏𝟎𝟎; 𝟎}

0000 ✔ ✔

0001 ✘ ✘

0010 ✔ ✘

0011 ✘ ✔

0100 ✔ ✘

0101 ✔ ✘

0110 ✔ ✘

0111 ✔ ✘

1000 ✔ ✘

1001 ✔ ✘

1010 ✔ ✘

1011 ✔ ✘

1100 ✔ ✘

1101 ✔ ✘

1110 ✔ ✘

1111 ✔ ✘

x0
x1

x2
x3

x4

y

G1

G2

G3

G5

G7

x5
x6

G4

G6

(a)

x0=0
x1=0

x2=0
x3=0

x4=0

y=1

G1

G2

G3

G5

x5=0
x6=0 G4

G6

k0

Gk0

Gk1

k1

Gk2k2
Gk3

k3

1/0/1

0/1/1

(c)

G7

x0=0
x1=0

x2=0
x3=1

x4=1

y=0

G1

G2

G3

G5

G7

x5=0
x6=0 G4

Gk3
G6

k0

Gk0

Gk1

k1

Gk2k2

k3

0

0

0

0

0

0

1

0

(d)

0

k0=0
k1=0

k2 k3

Gk3
G6

x0
x1

x2
x3

x4

y

G1

G2

G5

G7

x5
x6

G4

k0
Gk0

Gk1

k1

Gk2k2

k3
(b)

G3

17

Outline

▪ Overview

▪ Background

▪ SAT Attack Complexity Analysis

▪ Traditional XOR-based Locking

▪Point Function-based Locking

▪ Time complexity analysis for traditional SAT attack

▪ Conclusion

18

SAT Attack Analysis on AntiSAT

▪ AntiSAT block is the

ANDed two key blocks,

𝑔(𝑋, 𝐾𝐴) and ҧ𝑔(𝑋, 𝐾𝐵).

• 𝑔 is the AND-tree for secure

integration (p = 1).

• 𝑔 and ҧ𝑔 are always

complementary under the

correct key.

• Only one incorrect output for

any wrong key.

▪ Key constraint on 𝐾𝑔
• 1 IO pair is sufficient to

break the secret key.

r

X

y = 0/1

Original

Circuit

Kg
g

KAg

y' = 1/0

Original

Circuit

g

KBg

 1

0

1

0/1

0/1

1

1

1

0

(a)

Circuit A

Circuit B

g

g

1/0

0/1

1

0

1

0

r

r

r

x0
kr

x1
kr+1

xr-2
k2r-2

xr-1
k2r-1

0

(b)

g

k2r-1 = xr-1 = kr-1

kr = x0 = k0

kr+1 = x1 = k1...

Kg

(c)

19

SAT Attack Analysis on CAS-Lock

▪ CAS-Lock consists of the

ANDed key blocks, 𝑔(𝑋, 𝐾𝐴)
and ҧ𝑔(𝑋, 𝐾𝐵).

• 𝑔 is the cascaded chain of

AND/OR gate.

• 𝑔 and ҧ𝑔 are always

complementary under the

correct key.

• Output corruptibility is tuned

by the location and number

of OR gates.

▪ Key constraint on 𝐾𝑔

• Linear number of pairs can

uniquely break the secret key.

4

X

y = 0

Original

Circuit

Kg g

4

y' = 1

Original

Circuit

g

 1

0

1

0

0

1

1

1

0

(a)

Circuit A

Circuit B

4

g

g

[k0...k4]

[k5...k9]
KAg

[k5...k9]

KBg

[x0...x4]

g

g
 1

X
KAg

KBg
(b)

20

SAT Attack Analysis on TTLock and
SFLL

▪Oracle inside the locked circuit
• Perturb Unit (PU) F*

• Restore Unit (RU) G*

▪Commercial synthesis tool
optimization.

• Multiple solutions for PU

• Unique extraction for RU

[1]. D. Sirone and P. Subramanyan, “Functional analysis attacks on logic locking,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE), pp. 936–939, 2019.

Figure: Generalized architecture of stripped

functionality logic locking (SFLL). [1]

21

Outline

▪ Overview

▪ Background

▪ SAT Attack Complexity Analysis

▪ Traditional XOR-based Locking

▪Point Function-based Locking

▪ Time Complexity Analysis For Traditional SAT Attack

▪ Conclusion

22

Time Complexity Analysis For Traditional
SAT Attack

23

Time Complexity Analysis For Traditional
SAT Attack – Cont.

|𝑲| |𝑷| CPU time (s) 𝑼𝑵𝑺𝑨𝑻

𝑻𝒐𝒕𝒂𝒍
(%)

Total IO Pairs Average UNSAT

1 1 86.351 0.09108 0.09108 86.25948 99.894

5 4 79.614 0.12705 0.03176 79.48717 99.840

10 7 62.018 0.14788 0.02113 61.87004 99.761

15 10 77.133 0.17205 0.01721 76.96051 99.776

20 14 92.588 0.32586 0.02328 92.26268 99.648

25 20 88.295 2.48402 0.12420 85.81125 97.186

30 16 73.065 0.84954 0.05310 72.21507 98.837

35 29 86.737 14.53748 0.50129 72.19920 83.239

40 27 149.097 13.34636 0.49431 135.7502 91.048

45 41 1130.466 18.31241 0.44664 1112.154 98.380

50 37 84.404 6.16717 0.16668 78.23738 92.693

55 45 1188.844 57.14645 1.26992 1131.698 95.193

Start Time

End Time

24

Conclusion

▪ SAT attack complexity for logic locking is linear in iterations due to
the removal of large number of incorrect keys per iteration.

▪ This is the first time a non-monotonically increase in SAT complexity
under increased key sizes is reported.

▪ We give analytical reasoning for SAT attack on post-SAT solutions,
AntiSAT, CAS-Lock, TTLock and SFLL.

▪ For future SAT-resilient locking schemes, one can target on
achieving the same degree of time complexity like the last iteration of
c6288 benchmark.

25

Any Questions?

26

Contact:

Prof. Ujjwal Guin, Auburn University

Email: ujjwal.guin@auburn.edu

Thank you!

