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• Exhaustive formal verification can eliminate unspecified behaviors that 
hackers could exploit.

• Formal is exceptional at finding corner case behaviors, even when 
exhaustive proofs of correctness are not possible at system-level scale.

• Jasper’s specialized apps can be applied to specific known security 
vulnerabilities and provide results with greater efficiency or 
completeness compared to alternative methodologies 
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Hardware Bugs – Security Vulnerabilities

• State Machine Deadlock

• Buffer Overflow

• Incorrect Register Access

• Unexpected X-propagation

• Bus Protocol Violation

• Improper ECO Implementation
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Jasper: Formal Verification Platform

Highly interactive formal debug
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CWE Mapping to Formal Apps
CWE Description Formal  App

1245 Improper Finite State Machines (FSMs) in Hardware Logic Superlint

1247 Missing or Improperly Implemented Protection Against Voltage and Clock Glitches CDC

1271 Uninitialized Value on Reset for Registers Holding Security Settings XProp

1263 Improper Physical Access Control SPV

1282 Assumed-Immutable Data is Stored in Writable Memory SPV

1258 Exposure of Sensitive System Information Due to Uncleared Debug Information SPV

1330 Remanent Data Readable after Memory Erase SPV

1231 Improper Implementation of Lock Protection Registers CSR

1234 Hardware Internal or Debug Modes Allow Override of Locks CSR

1283 Mutable attestation or measurement reporting data CSR

1242 Inclusion of undocumented features CSR

1234 Failure to Disable Reserved Bits CSR

1258 Exposure of Sensitive System Information Due to Uncleared Debug Information FPV and SPV

1262 Improper Access Control for Register Interface FPV

1261 Improper Handling of Single Even Upsets FSV
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• Exhaustive (in some cases!)

• Exposes Specification Gaps and Ambiguities

• Natural Emphasis on Negative Testing (Counter-Examples)

• Tight Integration of Functional and Security Verification 

• Ability to model taint propagation

Why Formal?
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• Formal is a key component of hardware security verification

• Security verifications start with basic functional verification and focusses on 
negative testing.

• Formal must be integrated with other components of the security verification 
environment.

• If formal is used early in design bring-up it can set the stage for later focused 
vulnerability analysis.

Conclusions
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