
The Role of Formal Verification in Security Assurance

Dan Benua

July 2022

© 2022 Cadence Design Systems, Inc.2

• Exhaustive formal verification can eliminate unspecified behaviors that
hackers could exploit.

• Formal is exceptional at finding corner case behaviors, even when
exhaustive proofs of correctness are not possible at system-level scale.

• Jasper’s specialized apps can be applied to specific known security
vulnerabilities and provide results with greater efficiency or
completeness compared to alternative methodologies

Formal Verification – Hardware Security

Hardware

Operating System

Software

App

© 2022 Cadence Design Systems, Inc.3

State Space View of Security

Potential States and State Sequences

© 2022 Cadence Design Systems, Inc.4

State Space View of Security

Potential States and State Sequences

Specified

Behaviors

© 2022 Cadence Design Systems, Inc.5

State Space View of Hardware Security

Potential States and State Sequences

Specified

Behaviors

“Reachable”

Behaviors

© 2022 Cadence Design Systems, Inc.6

State Space View of Hardware Security

Potential States and State Sequences

Specified

Behaviors

“Reachable”

Behaviors

Specified but

Unreachable

© 2022 Cadence Design Systems, Inc.7

State Space View of Hardware Security

Potential States and State Sequences

Specified

Behaviors

“Reachable”

Behaviors

Reachable but

Unspecified

© 2022 Cadence Design Systems, Inc.8

State Space View of Hardware Security

Potential States and State Sequences

Specified

Behaviors

“Reachable”

Behaviors

Reachable by

Corruption

© 2022 Cadence Design Systems, Inc.9

Hardware Bugs – Security Vulnerabilities

• State Machine Deadlock

• Buffer Overflow

• Incorrect Register Access

• Unexpected X-propagation

• Bus Protocol Violation

• Improper ECO Implementation

© 2022 Cadence Design Systems, Inc.10

Hardware Bugs – Security Vulnerabilities

• State Machine Deadlock

• Buffer Overflow

• Incorrect Register Access

• Unexpected X-propagation

• Bus Protocol Violation

• Improper ECO Implementation

• Denial of Service

© 2022 Cadence Design Systems, Inc.11

Hardware Bugs – Security Vulnerabilities

• State Machine Deadlock

• Buffer Overflow

• Incorrect Register Access

• Unexpected X-propagation

• Bus Protocol Violation

• Improper ECO Implementation

• Denial of Service

• Data Corruption, Unexpected Control Flow

© 2022 Cadence Design Systems, Inc.12

Hardware Bugs – Security Vulnerabilities

• State Machine Deadlock

• Buffer Overflow

• Incorrect Register Access

• Unexpected X-propagation

• Bus Protocol Violation

• Improper ECO Implementation

• Denial of Service

• Data Corruption, Unexpected Control Flow

• Secure Data Leakage or Corruption

© 2022 Cadence Design Systems, Inc.13

Hardware Bugs – Security Vulnerabilities

• State Machine Deadlock

• Buffer Overflow

• Incorrect Register Access

• Unexpected X-propagation

• Bus Protocol Violation

• Improper ECO Implementation

• Denial of Service

• Data Corruption, Unexpected Control Flow

• Secure Data Leakage or Corruption

• Data Corruption, Unexpected Control Flow

© 2022 Cadence Design Systems, Inc.14

Hardware Bugs – Security Vulnerabilities

• State Machine Deadlock

• Buffer Overflow

• Incorrect Register Access

• Unexpected X-propagation

• Bus Protocol Violation

• Improper ECO Implementation

• Denial of Service

• Data Corruption, Unexpected Control Flow

• Secure Data Leakage or Corruption

• Data Corruption, Unexpected Control Flow

• Data Corruption

© 2022 Cadence Design Systems, Inc.15

Hardware Bugs – Security Vulnerabilities

• State Machine Deadlock

• Buffer Overflow

• Incorrect Register Access

• Unexpected X-propagation

• Bus Protocol Violation

• Improper ECO Implementation

• Denial of Service

• Data Corruption, Unexpected Control Flow

• Secure Data Leakage or Corruption

• Data Corruption, Unexpected Control Flow

• Data Corruption

• Vulnerability Insertion

© 2022 Cadence Design Systems, Inc.16

Jasper: Formal Verification Platform

Highly interactive formal debug

transforms to fit the App

Solve specific verification problems

with targeted Jasper Apps

ProofGrid™ Manager assigns best engine for task

Broad formal engine and infrastructure

Programmable Interface via TCL

Assertion Based Verification IPs for AMBA and other common protocols

Connectivity

Verification App

X-Propagation

Verification App

Control/Status

Register Verif. App

SuperLint (AFL)

App

Design Coverage

Verification App

Low Power

Verification App

Security Path

Verification App

Sequential Equivalence

Checking App

Coverage

Unreachability App

Formal Property

Verification App

Clock Domain

Crossing App

Functional Safety

Verification App

© 2022 Cadence Design Systems, Inc.17

CWE Mapping to Formal Apps
CWE Description Formal App

1245 Improper Finite State Machines (FSMs) in Hardware Logic Superlint

1247 Missing or Improperly Implemented Protection Against Voltage and Clock Glitches CDC

1271 Uninitialized Value on Reset for Registers Holding Security Settings XProp

1263 Improper Physical Access Control SPV

1282 Assumed-Immutable Data is Stored in Writable Memory SPV

1258 Exposure of Sensitive System Information Due to Uncleared Debug Information SPV

1330 Remanent Data Readable after Memory Erase SPV

1231 Improper Implementation of Lock Protection Registers CSR

1234 Hardware Internal or Debug Modes Allow Override of Locks CSR

1283 Mutable attestation or measurement reporting data CSR

1242 Inclusion of undocumented features CSR

1234 Failure to Disable Reserved Bits CSR

1258 Exposure of Sensitive System Information Due to Uncleared Debug Information FPV and SPV

1262 Improper Access Control for Register Interface FPV

1261 Improper Handling of Single Even Upsets FSV

© 2022 Cadence Design Systems, Inc.18

• Exhaustive (in some cases!)

• Exposes Specification Gaps and Ambiguities

• Natural Emphasis on Negative Testing (Counter-Examples)

• Tight Integration of Functional and Security Verification

• Ability to model taint propagation

Why Formal?

© 2022 Cadence Design Systems, Inc.19

• Exhaustive (in some cases!)

• Exposes Specification Gaps and Ambiguities

• Natural Emphasis on Negative Testing (Counter-Examples)

• Tight Integration of Functional and Security Verification

• Ability to model taint propagation

Why Formal?

But What About Capacity?

© 2022 Cadence Design Systems, Inc.20

Smart Security

Solution

Simulation
Xcelium

Cadence Security Verification Solution and Partners

SoC

Formal
Jasper

PSS
Perspec Security

vPlan &
Traceability
vManager

Emulation
Palladium

Prototyping
Protium

Cycuity
Radix Security

Verification

Greenhills
Secure RTOS

UVM
Specman
Xcelium

© 2022 Cadence Design Systems, Inc.21

• Formal is a key component of hardware security verification

• Security verifications start with basic functional verification and focusses on
negative testing.

• Formal must be integrated with other components of the security verification
environment.

• If formal is used early in design bring-up it can set the stage for later focused
vulnerability analysis.

Conclusions

© 2022 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence

Design Systems, Inc. Accellera and SystemC are trademarks of Accellera Systems Initiative Inc. All Arm products are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All MIPI

specifications are registered trademarks or service marks owned by MIPI Alliance. All PCI-SIG specifications are registered trademarks or trademarks of PCI-SIG. All other trademarks are the property of their respective owners.

https://www.cadence.com/go/trademarks

